Questions are for both separate science and combined science students unless indicated in the question

Q1.

A student investigated how the acceleration of a trolley varies with the resultant force on the trolley.

Figure 1 shows some of the equipment used.

40		
	Runway Bench Mass hanger	
(a)	Figure 1 shows the force F which acts through the string.	
	What name is given to force F ?	
		(1)
(b)	Give one variable that should have been a control variable in this investigation.	
		(1)
(c)	The student held the trolley stationary and then released it.	
	The trolley moved along the runway with a constant acceleration.	
	The student recorded the time taken for the trolley to travel a measured distance along the runway.	
	Describe how the acceleration of the trolley can be calculated using the	

time taken and distance travelled by the trolley.						

For one set of results, the force acting through the string was 2.0 N.

(d)	The student released the trolley three times and determined the following
	values for acceleration:

1.36 m/s²

1.39 m/s²

1.33 m/s²

Calculate the uncertainty in the values of acceleration.

Uncertainty = ± _____ m/s²

(2)

(e) The runway was then raised at one end.

The force acting through the string remained the same.

Figure 2 shows this.

Figure 2

Explain how the acceleration was affected by raising the end of the runway.

(2)

(Total 9 marks)

Q2.

The figure below shows a velocity–time graph for a train travelling between two stations. (HT only)

(a) Determine the distance travelled by the train in the first 600 s of the journey.

Distance = ____ m (3)

(b) Explain what happens to the braking force as the train decelerates.

Use information from the figure above.

(6)

	Deceleration =	m/s²
Another train trave	els at a speed of 60 m/s.	
A constant braking stop.	ng force of 270 000 N causes the train to dece	erate and
mass of train = 24	40 000 kg	
Calculate the dista	tance travelled while the braking force is applie	ed.
Use the Physics E	Equations Sheet. (Physics only)	

(e)	It is illegal for train drivers to drink alcohol before driving a train.	
	Explain how drinking alcohol would affect the stopping distance of a train.	
		3)
	(Total 18 marks	s)

Q3.

Figure 2 shows how the velocity of the car changes during the first 5 seconds of a journey.

Figure 2

(a) After 3 seconds, the momentum of the car is 24 000 kg m/s.

Calculate the mass of the car.

Use the Physics Equations Sheet. (HT only)

Mass = _____ kg

U	se Figure 2. (HT only)
_	
	Distance travelled by the car =n
	an emergency the driver needs to apply the brakes suddenly to stop the ar quickly.
Т	he driver of the car is distracted.
_	
E	xplain why the distraction will increase the stopping distance.
Ξ	xplain why the temperature of the brakes increases as they are used.

Q4.

The figure below shows some bumper cars. (Physics only)

Bumper cars are designed to withstand collisions at low speeds.

During tl m/s.	ne collision, the change in momentum of the bumper car is 700 kg
The time	e taken for the collision is 0.28 s.
Calculat	e the force on the bumper car during the collision.
Use the	Physics Equations Sheet. (HT only)
	Force =

		ine people in
at 2.0 m/s². While accelerating, the bumper The final velocity of the bumper		
	noved with an initial constant velocity and the	n accelerated
While accelera	ting, the bumper car travelled a distance of 1.	5 m.
The final veloci	ity of the bumper car was 2.5 m/s.	
Calculate the ir	nitial constant velocity of the bumper car.	
Use the Physic	s Equations Sheet.	
•		
		m/

(2)

(2)

Q5.

Speed limits on roads increase safety. (Physics only)

- (a) The braking distance of a car increases as the speed of the car increases.
 Give two **other** factors that **increase** the braking distance of a car.
 1.
 2.
- (b) Explain why the driver's reaction time affects the thinking distance of a car.
- (c) Scientists have investigated how drinking alcohol affects a person's reaction time.

Figure 1 shows the results of the investigation.

(2)

Which of the following conclusions can be made using Fi	gure 1?
Tick (✓) two boxes.	
Every person's reaction time increases after drinking alcohol.	
Mean reaction time increases after drinking alcohol.	
Some people's reaction time is not affected by drinking alcohol.	
The change in reaction time is not the same for all people after drinking alcohol.	
There is a smaller range of reaction times after drinking alcohol.	

Figure 2 shows some speed cameras on a road.

The speed cameras determine the average speed of cars on the road.

(d)	The speed limit on the road in Figure 2 is 20 m/s.	
	The cameras in Figure 2 are 1.5 km apart.	
	Calculate the minimum time it takes to travel 1.5 km without breaking the speed limit.	
	Use the Physics Equations Sheet.	
	Minimum time =s	(4)
(e)	The average speed of a car between the cameras and the average velocity of the car between the cameras are different.	(-)
	Explain why.	
		(3)
	(Total 13 n	narks)

Q6.

Hailstones are small balls of ice. Hailstones form in clouds and fall to the ground.

Figure 1 shows different-sized hailstones.

Figure 1

A hailstone falls from a cloud and accelerates.

he hailstone stops accelerating	and reaches terminal velocity.
Explain why the hailstone reache	es terminal velocity. (Physics only)

A scientist investigated how the mass of hailstones affects their terminal velocity.

Figure 2 shows the results.

	0 5 10 15 20 25 Mass of hailstone in grams
(c)	Why does terminal velocity increase with mass?
	Tick (✓) one box.
	As mass increases the cross-sectional surface area of a hailstone increases.
	As mass increases the volume of a hailstone increases.
	As mass increases the weight of a hailstone increases.
(d)	Explain the difference in the maximum kinetic energy of a hailstone with a mass of 10 g and a hailstone with a mass of 20 g.

(1)

(e) The kinetic energy of a hailstone is measured in joules.

Which of the following is the same as 1 joule?

Tick (✓) one box.

Figure 2 is repeated below.

(f) A hailstone hit the ground at its terminal velocity of 25 m/s.

The hailstone took 0.060 s to stop moving.

Determine the average force on the hailstone as it hit the ground.	
Jse information from Figure 2 .	
Jse the Physics Equations Sheet. (Physics only) (HT only)	
Average force = N	
(Total 12 m	(3) arks)
(10(a) 12 III	arks)